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Multiview LSA

•Represent datasets (linguistic or otherwise) as
matrices, such that each matrix is a view of
a word/phrase.

•Use Max-Var GCCA to create embeddings.
•Use incremental SVD so that the method can
scale to handle millions of words/phrases and
hundreds of views, where a view can be either a
sparse or a dense matrix.

• Handle missing values instead of ignoring

Max-Var GCCA

LSA is an application of PCA to a single term-
document cooccurrence matrix. CCA learns linear
projections that are maximally correlated to each other
from two views, Generalized CCA is a family of ex-
tensions of CCA to maximize correlation across multi-
ple views.
One variant of GCCA called MAX-VAR GCCA
induces an auxilliary representation G that is maxi-
mally correlated to linear projections of the views in
terms of sum of squared correlations [1, 2].

G = eig
 J∑
j=1

Pj


Where, Pj = Xj(X>j Xj)−1X>j

Handling Missing Values

Sparse cooccurrence matrices contain plenty of missing
values that cripple the performance of methods that
rely on spectral decompositions. We address this spar-
sity by optimizing our representations only on the ob-
served rows using a variant of MAX-Var GCCA
presented by [3].

G = eig
(
∑
j
Kj)−

1
2(

J∑
j=1

Pj)(
∑
j
Kj)−

1
2

 (1)

where [Kj]ii = 1 if row i of view j is observed and zero
otherwise.

Further Information

•Visit: www.cs.jhu.edu/∼prastog3/mvlsa
•Email: pushpendre@jhu.edu

Abstract

Multiview LSA is a way of utilizing hundreds of data sources to
learn representations for millions of words/phrases that outperform
baselines like Word2Vec and Glove [4, 5].

Training Datasets
- 15 word history from Polyglot En-
glish Wikipedia Corpus
- Word alignment statistics from
6 Word Aligned bitext corpora
(Arabic, Czech, German, Spanish,
French, Chinese)
- Parent child cooccurrence events
for 22 dependency relations from
Annotated GigaWord
- Framenet Lexical Units aug-
mented with PPDB paraphrases
- Morphological information from
Catvar, Morpha, Morphg and Mor-
phy
- Embeddings generated by Glove
and Word2Vec

Test Set Size σ0.9
0.05

MEN 3000 1.3
RW 2034 1.6
SCWS 2003 1.6
SIMLEX 999 2.3
WS 353 3.9
MTURK 287 4.3
WS-REL 252 4.6
WS-SEM 203 5.1
RG 65 9.2
MC 30 13.8
T-SYN 10675 0.68
T-SEM 8869 0.74
TOEFL 80 6.63

Table 1: Common test sets and associ-
ated MRDS values. MRDS= σ0.9

0.05 mea-
sures the minimum required difference be-
tween two algorithms for that difference
to be significant with a pval of 0.05 as-
suming that the maximum correlation be-
tween the ratings produced by the com-
peting algorithms is 0.9.
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Ablative analysis of performance versus Views

All Views 

 !Framenet 

 !Morphology 

 !Bitext 

 !Wikipedia 

 !Dependency 

M
EN RW

SC
W

S

SI
M
LE

X
W

S

M
TU

RK

W
S-

REL

W
S-

SE
M RG M

C

An-
SY

N

An-
SE

M

TO
EF

L

0.30

0.40

0.50

0.60

0.70

0.80

0.90

C
o
rr

e
la

ti
o
n

A
ccu

ra
cy

Comparison between Word2Vec, Glove and MVLSA

MVLSA (All Views+Glove+W2Vec)

MVLSA (Glove+W2Vec)

MVLSA (All Views)

MVLSA (Wiki)

Glove

W2Vec (Skipgram)

Unifying Prior Work

We could approximately mimic the objective of [5]
by changing the reweighting terms in our method
for handling missing values as follows:

minimize:
G,Uj

J∑
j=1

∥∥∥WjKj(G−XjUj)
∥∥∥2
F

subject to: G>G = I

(2)

where

[Wj]ii =
 wi
wmax

3
4

if wi < wmax else 1,

and wi =
∑
k

[Xj]ik.
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