
The Johns Hopkins University

Entity recommendations on a Cold Start
Knowledge Graph

Pushpendre Rastogi, Vince Lyzinski, Benjamin Van Durme

Technical Report

February 3, 2017

c©HLTCOE, 2012

Acknowledgements This material is based on research sponsored by
the Defense Advanced Research Projects Agency (DARPA) under the
Deep Exploration and Filtering of Text (DEFT) Program, agreement
number FA8750-13-2-001. This work was also supported, in part, by
the Human Language Technology Center of Excellence. Any opinions,
findings, and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views of
the sponsor.

HLTCOE
810 Wyman Park Drive
Baltimore, Maryland 21211
http://hltcoe.jhu.edu/

2

Entity recommendations on a Cold Start
Knowledge Graph

HLTCOE, Johns Hopkins University

Pushpendre Rastogi Vince Lyzinski Benjamin Van Durme

1 Introduction

In this report we consider the Adept Knowledge Base (KB), which we will work with
as a graph. This graph is composed of a set of vertices (i.e., entities, nodes), a set of
edges (i.e., relations, predicates, slot-fills) and vertices and edges may have zero or more
properties (i.e., attributes, features).
The predominant way in which analysts interact with and make use of knowledge

graphs is by treating knowledge graphs as databases that support evaluation of queries.
An analyst may execute two types of queries on a KB:

Logical Queries An analyst may want to retrieve a set of items, that lie in a set exactly
described via a logical expression. For example, an analyst may ask for all vertices that
are connected to the vertex with the highest degree. A simpler example is static lookup:
an analyst may begin with an entity represented as a vertex connected via a “name”
attribute to the value “John Smith” and then construct a query which looks for an edge
called “worksFor”, and then “leaderOf”.1 Logical queries – so called “one hop” and “two
hop” – form the basis for evaluation of CS-KBP 2015 task .

Example Queries Here an analyst provides examples of items of interest/relevance, and
wants the system to nominate or recommend items that are similar to the examples.
Sometimes the analyst may also provide negative supervision in the form of examples
that are marked as uninteresting or irrelevant. Databases that can support such example
queries and return a sorted list of relevant entities are called Recommendation Systems
or Recommenders in short. They may also be called Vertex Nomination Systems. We
call algorithms that can rank entities in a dataset based on a set of example entities
Recommendation Algorithms (RAs).

While the evaluation under DEFT for KB creation has focused on performance under
Logical Queries, here we assume our goal is to enable Example Queries. I.e., use an
automatically created KB as the sole support for performing Vertex Nomination.

Interfaces that enable logical queries view the goal of the Adept KB as one of aggregating
Information Extraction (IE) output from raw natural language text into a database that
can be queried declaratively by an analyst, similar to the way SQL is used to query a

1Specifically, a knowledge graph may be stored inside a graph database, an RDF triplestore or even
inside XML files and then queried using a graph query language such as Cypher or Gremlin or an
RDF query language like SPARQL or XPath which is the defacto standard for querying XML data.

3

relational database. The important point is that creating the correct query is left to the
analyst who must craft an expression that succinctly and efficiently describes the set of
interesting or relevant items. Crafting such a query may be difficult and it may require
significant skill on the part of the analyst (See Example 1.1).

Example 1.1
Consider a social network of sportsmen that contains the height and weight of people

and the sports that they play as well as their friendship status. Assume that an analyst
needs to retrieve adult triathletes with low lung capacities from this database.

Clearly our analyst has her job cut out for her, not only will she have to figure out the
various ways in which people might express that they are triathletes, but the attributes
of age and lung capacity don’t even exist in the dataset. Some triathletes may state
explicitly that they are “triathlete” or that their sport of choice is “triathlon” or they
may instead state the three or more sports that they play. Because of this variety of
expressions individually creating the correct filters by hand can be time consuming.
On top of that the analyst will have to manually figure out some rules for guessing the
age and lung capacity of a person based on their height and weight.
In such a scenario a Recommender can be very useful for achieving quick results.

A general purpose RA based on a probabilistic linear model built with third order
feature conjunctions can automatically figure out the right entities to retrieve from the
database and give useful hints to the analyst for fast prototyping.

In contrast to logical queries, example queries do not require the analyst to create a logical
expression by herself. A recommender can use the information stated in the knowledge
graph to infer new information that is not directly stated in any source document, and
recommend relevant items to a user with minimal supervision. This report lays out
definitions and pointers to related areas of research from various communities, and then
presents the performance of a few canonical VN algorithms (See Table 1.1) when applied
to to the Adept KB via a representative set of example queries.

We conclude from these experiments (See Section 5) that the current Adept KB does
not support example queries well, owing to its severe sparsity in edges. In short, the
“knowledge graph” is not much of a graph, in that the overwhelming majority of vertices
form singleton cliques: entities are discovered but no relations connect them to the rest
of the KB.

We therefore end the report with a proposal to extend the ontology of the Adept KB,
based on conservatively subselecting from an OpenIE ontology just those relations that
best support provided example queries. We assume in this that DARPA does not wish to
allow a massive (orders of magnitude) increase to the relation types in the Adept ontology,
and thus will pursue a strategy for conservatively proposing to a KB-engineer a reduced
set of relation types such that if they were included (based on observed performance
in their extraction) then we would have a more sufficient graph for performing vertex
nomination.

4

Method Type
Naive Bayes Inductive
Modified Adsorption Transductive
Random Walk Transductive

Table 1.1: List of Recommendation Algorithms

2 The BBN2 dataset

The TAC Cold Start Knowledge Base Population (CS-KBP) shared task is organized by
NIST to evaluate systems that build a knowledge base (KB) from raw natural language
text (TAC-KBP@NIST, 2015). The competing systems extract entities and relations based
on textual clues present in natural language documents and populate a KB according to
a shared schema of entities and relationships. The set of documents is released at the
beginning of the task and the schema is released some time before that. At the end of the
shared task the systems submit their automatically generated knowledge bases to NIST,
which evaluates their accuracy. BBN participated in the 2015–TAC Cold Start Knowledge
Base Population where it was the top performing participant in terms of precision and
overall F1 according to the official results as of November 2015 (Bonan Min, 2015). Since
BBN’s BBN2 was one of its top performing submissions, to ascertain the feasibility of
using an automatically constructed knowledge graph as a recommender, we performed
our experiments on BBN2.
The BBN2 dataset is a knowledge graph built according to the Adept Ontology . It

contains three standard entity types: PER, ORG, LOC that refer to Person, Organization
and Location respectively, as well as four extra types of TITLE, DATE, CRIME,
URL (Table 2.1). We will collectively denote entities of these types as named entities.
Technically, we define a named entity to be a any entity that has only either a canonical
string or a canonical time attached to it and no other attributes. See 2.1 for an example.
Because of the errors made during automatic relation extraction there can be multiple
named entities with different identifiers that have approximately the same canonical string
(See Example 2.2). We call this phenomenon Denormalization and we will show later this
phenomenon severely hurts the performance of any recommendation system.

Example 2.1
The identifier 9dd1d8d3-9a1f-4ec2-a45b-64cce788eb01 in the dataset has the type

Title and the canonical string associated with it is Almighty King. This identifier
has no other attributes attached to it.

5

Example 2.2
The identifiers e3ac2b1e-cd3b-4cf8-a1fb-b1f71db123df and

234f3110-c8ca-49aa-ba7b-a45bb5467c38 have canonical strings professor and
Professor respectively which differ only in their capitalization.

As this example illustrates some of the titles in the BBN2 dataset lexically differ from
each other but mean the same. Matching such fragments can help in reducing sparsity
and may improve the performance of the vertex nomination algorithms. We leave such

pre-processing for future work, and measure the performance of the VN algorithms on
the ADEPT KB as is.

Instantiations Type Property
125022 Person canonicalString
69544 Organization canonicalString
23754 GeoPoliticalEntity canonicalString
1761 Title canonicalString
819 Date xsdDate
333 Crime canonicalString
189 URL canonicalString

Total = 221, 547

Table 2.1: The number of instantiations(occurrences) of Named Entities of different types.

As Table 2.1 shows, the Person category is the highest occurring category with 125K
instantiations and it is slightly less than double the next largest category of Organization.
The occurrences of the URL type are negligible.

Also we note that the knowledge graph contains a large number of singleton entities.
We can infer this from Tables 2.1 and 2.2 since the number of entities is much larger than
the total number of edges.
The relations in the BBN2 dataset comprise of a small number of relation types. Just

like named entities every instance of a relation has a unique id. Each instance relates two
named entities (See Example 2.3).

Example 2.3
The id 001ae391-3a55-43d1-8d3e-0557bdd943d1 refers to a relation of the type

Resident which connects its named attribute person which must have the type Person
with its location attribute which must be of type Geopoliticalentity.

The total number of regular relations specified in the CS-KBP 2015 task was 41. The
occurrences for different relations follow a power law (Table 2.2) and the highest occurring
Role relation type that relates a person to his/her title accounts for 30% of the data
out of the total 20 relations that are observed. The reason for this skew is that the
natural language text itself has a strong bias about the type of relations that are reported
explicitly, and that bias is reflected in the distribution of textual mentions of relations.

6

Instances Relation Attribute 1 Attribute 2
42490 Role person role
36631 EmploymentMembership employeeMember organization
16288 Resident person location
9600 Leadership leader affiliatedEntity
8705 Subsidiary† organization subOrganization
7242 OrgHeadquarter† organization location
2764 Origin person affiliatedEntity
1774 ParentChildRelationship‡ parent child
1612 Die person place
1317 SpousalRelationship‡ person person
1306 StudentAlum studentAlumni organization
1281 Founder founder organization
1261 BeBorn person time
530 InvestorShareholder investorShareholder organization
417 SiblingRelationship‡ person person
387 ChargeIndict defendant crime
374 StartOrganization† organization time
369 Membership† organization member
200 OrganizationWebsite† organization url
33 EndOrganization† organization time

Total = 134, 581

Table 2.2: Relations Types and their attributes. †indicates relations for which neither of
the arguments are of the type Person. ‡indicates relations for which both of
the arguments have the type Person.

7

2.1 Relations or Attributes

As shown in table 2.2 the Role relation does not relate two people. It only relates a
person and its title. In this sense, the Role relation act as a feature or an attribute
of a person instead of a relation between them, since the Role for one person can be
completely independent of the Role of another person, unlike the Sibling, Spousal
and ParentChild relationships. The Sibling, Spousal and ParentChild relationships
always affects two people simultaneously in the sense that if a person B is set to be
the sibling of A then A must be set to the sibling of B. We note that 11 out of 20
relations including the top four most observed relations, act as attributes of persons
instead of relations. So the person-person relational information is lower in comparison to
person-attribute information. Also note that only 6 relations relate organization to other
organizations or to locations, so the attribute-attribute relational information is also low.
However, in order to leverage the information present in the OrgHeadquarter relation
we use the name of the headquarter of an organization that is related to a person as an
attribute of the person.

2.2 Sparsity of the Adept KB

The Adept KB is a graph with more PER entities than edges. To quantify the sparsity
and the connectedness of the Adept KB we present a table of the degrees of all the PER
entities in the Adept KB in table 2.3. Table 2.4 tabulates the sizes of the components
that those PER entities belong to. Note that both of these tables do not count edges
that were not incident with at least one PER entity with the exception of edges of type
OrgHeadquarter. The edges of type OrgHeadquarter are included in the counts for the
following reasons: 1) The location of the headquarter of the organization that a person is
affiliated with can act as an excellent feature for ranking a person entity. 2) Since the
number of locations is small extracting these features does not cause an explosion in the
number of features.

Degree 0 1 2 3 4 5 6 7 8 9 10 >10
PER Entities 82057 16672 8997 6862 3056 2521 1290 846 615 432 329 1345

Table 2.3: Table of degrees for the PER entities in the Adept KB.

Component Size 1 2 3 4 5 42350
Number of Components 82057 81 10 10 1 1

Table 2.4: The component sizes of the PER entities in the Adept KB.

Table 2.3 shows that the number of completely disconnected PER entities in the Adept
KB constitute 65.6% of the total PER entities and that 13.3% of the PER entities have
degree 1 but only 162 PER entities reside in a “dumbbell”, i.e., a component of size 2.
The majority of the entities that have degree 1 lie in the giant component that contains
42350 PER entities. This has a lot of significance since it means that more than a third of

8

the PER entities con be disconnected from the giant component by just removing single
edges from the graph. This shows that the component has a small densely connected
core and a large number of leaves. The above discussion clearly show that the Adept
knowledge graph is quite sparse and weakly connected.

3 Evaluation

In order to evaluate RAs we need to simulate the kind of example queries that an analyst
might submit to an RA. We represent a user’s query as a predicate on vertices, where
some positive example of the predicate are provided, and we wish to sort the remaining
vertices as to how confident we are that they satisfy the predicate (are of interest to the
user).
We chose to use an existing binarized attribute as a synthetic predicate function that

acts as the oracle that determines whether an entity is relevant or not. During training
and testing we remove this attribute from the data and only present a few examples of
entities with the values of this attribute as labels. The algorithm then has to predict
whether this hidden attribute is 0 or 1 for the rest of the people on the basis of the
training data and then to assign a rank to them such that people with attribute value
1 rank higher than people with attribute value of 0. Two standard evaluation metrics
for these tasks are the Precision@K(P@K) metric and the Area Under Precision Recall
Curve(AUPR) metric and we would report the performance of the systems on these two
metrics and compare them to a random baseline.

Example 3.1
For example, a user of the recommendation system may mark certain employees of the

“White House” as people of interest and based on these examples the recommendation
system needs to assign a high rank to the remaining employees of the “White House”
and a low rank to others. Note that the recommendation system does not receive the
attribute that the person was the employee of the “White House” during operation and
it has to make a guess on the basis of other persons and their attributes. Consider a
second example, where a predicate function may mark people who are “authors” as
people of interest and request the recommendation system to find more people who
are “authors”. Table 3.1 lists the 6 relations types that we use to create a 12 predicate
functions which we use for performance evaluation.

To simulate plausible recommendation criterion we assumed that a user of the knowledge
graph recommendation system is only interested in ranking the PER entities, therefore
the predicate function only needs to be able to label the PER entities.

4 Recommentation Algorithms for the Adept KB

Before we proceed to the discussion and comparison of different vertex nomination
algorithms, let us first understand the implications of the sparsity and fragmented nature

9

Relation Value 1 Value 2
Role author director

EmploymentMembership Army White House
Resident Chinese Texas

Leadership Democratic Parliament
Origin American Russia

StudentAlum Harvard Stanford

Table 3.1: List of Predicate Functions used as proxies of an analyst’s interests. See
example 3.1 for an illustration of the usage of the Role=author predicate
function.

of the Adept KB that we established in Section 2.2. In Section 2.2 we showed that 66% of
the vertices were singleton, the rest of the graph had one giant component and few small
components. Figure 4.1 is a cartoon representation of a graph with such characteristics.
We can see that out of 20 vertices only a small component can be used as input to a
vertex nomination algorithm and 14 out of 20 vertices are unusable. In this section we
discard such singleton entities and report the result of performing vertex nomination
on the connected portion of the data. With the above caveat, let us now describe the

1

Figure 4.1: Illustration of the relative sparsity in the BBN2 Knowledge Graph, with the
number of connected and unconnected vertices displayed in similar proportion
to the full BBN2 KB.

experimental setup that remains common across the application of all of the following
algorithms. Let the set of named entities in the Adept KB that have the type PER be P .
Let us consider the first row of table 3.1. It can define two predicate function / criteria
for relevance over the elements of P. The first predicate selects Q∞ ⊂ P such that all
elements of Q∞ have an attribute called role with the value of author. Analogously, the
second predicate selects Q2 such that all elements of Q2 have role=director.

10

Table 3.1 specifies a total of 12 such predicate functions and we evaluate the performance
of a VN algorithm over all of the 12 predicate functions. For each predicate function
we perform 5 trials and measure the performance in terms of the Area Under Precision-
Recall(AUPR) and Precision@K(P@K).2 After performing five trials we average the
performance of the VN algorithm across the trials and calculate the 90% confidence
interval assuming the t-distribution for the standard error(SE). Finally we aggregate the
confidence intervals and the average performance of the algorithms over all the predicate
functions and create a single average performance and performance interval for each
algorithm. We report these metrics in the later sections for different hyper-parameter
settings and most notably for different feature sets.
During each trial for a predicate, we select 10 entities that satisfy the criterion and

which we assume as the positive input that the user provided to the VN algorithms,
similarly we chose 10 PER entities that do not satisfy the criteria and assume that the
user provided those as negative input to the VN algorithm. During each trial we also
remove the edges/attributes that correspond to the predicate function from the Adept
KB before inputting the KB to the VN algorithm. We vary the entities used as training
data across trials but ensure that the same entities are used as training input across
different algorithms for a fixed predicate function and trial index. We denote the number
of training instances including both the negative and the positive labeled instances as N
and the remaining instances as M . We denote the set of PER entities whose relevance
is observed with the symbol O. The subset of O that satisfies the predicate function is
called O+ and we define O− = O \ O+. Clearly |O| = N = 20 for all trials. Note that
M can hypothetically have zero entities that satisfy the predicate function, however in
practice since there are more than 10 labeled instances this does not happen for any of
the predicates.

4.1 Entity Recommendation Through the Naive Bayes Model

Let v ∈ P . We can represent v through a feature vector by enumerating all edges that are
incident on v and representing the type of edge along with the neighboring vertex as the
occurrence of a binary feature. For example, let v© r−→ q© be an arc of type r connecting
v to vertex q. This arc can be represented as the occurrence of the binary feature r−→ q©.
All such binary features formed by all the arcs that are incident on v can be used to create
a feature vector f that represents v. Given this construction of a feature representation
of v we can represent O as the set {(f i, yi)|i ∈ {1, . . . , N}}. Here yi ∈ Y = {−1, 1} is the
label assigned to the vi and f i is its binary feature representation. yi = 1 means that
the feature f i represents a vertex of interest and yi = −1 means the opposite. Let K be
the length of f i. We denote the kth element of f i as f i[k] and we drop the superscript i

2We assume that the annotations present in the Adept KB are complete and correct and use those
as the gold standard. This assumption sometimes turns out to be patently wrong. For example in
the case of the predicate Employer=Army a number of time the Adept KB may have the annotation
that Employer=US Army or Employer=Pentagon but not the annotation that Employer=Army. In our
experiments we side-step these issues and assume that our task is to faithfully predict the predicate
function as present in the Adept KB.

11

when the exact data instance is immaterial. Let ŷNB denote the estimate produced by
the Naive Bayes model. The Naive Bayes models model the probability of (x, y) and it
estimates ŷNB as follows:

p(x, y) = p(f, y) = p(y)p(f | y) = p(y)
K∏
k=1

p(f [k] | y) (4.1)

ŷNB = argmax
y∈Y

p(y|f) = argmax
y∈Y

p(y)p(f |y) (4.2)

The Naive Bayes model can be trained by optimizing the log probability of the entire
corpus, {(f i, yi)|i ∈ {1, . . . , N}} as specified by the following expression:

N∑
i=1

log(p(vi, f i, yi)) =
N∑
i=1

log(p(yi)) +
N∑
i=1

log(p(vi, f i|yi)) (4.3)

Once the Naive Bayes model is trained on O then we can perform vertex nomination by
ranking the an unlabeled instance v according to the posterior probability p(y = 1|f).

Feature Design: Let us describe the features that we use for the Naive Bayes model
with an example. Consider a an entity named “Shaikh Ahmed” that is known to have
three properties: 1) It has a Role of “Gen.”; 2) It has a second Role of “chief”; and 3)
The name of its Residence is “Afghanistan”. We begin by concatenating the relation type
with the attribute value to get 3 distinct feature types “Role=Gen.”, “Role=chief” and
“Residence=Afghanistan”. We call these features the “Concatenative” features. Note that
this featurization does not share parameters between two different feature even though
they may have the same attribute value. For example, it seems plausible that sharing
the parameters between “Residence=Baltimore” and “Origin=Baltimore” could be useful.
We can alleviate this feature sparsity through the addition of “Backoff” features that are
based only on the attribute value and not the relation type. For example we can add the
following three features to “Shaikh Ahmed”. i) “Gen.” ii) “chief” and iii) “Afghanistan”.
We call this augmented featurization “Concatenation w/ Backoff”. We call the feature
set that contains only features like i, ii and iii the “Only Backoff” feature set. Finally
when we add the documents that a particular entity was mentioned in as features to
“Concatenative” features then we get the “Concatenative w/ Doc” feature set. For all
of the above methods we prune the featureset used to only those that features f that
occurred in O+ separately for each trial.

Results We present the aggregate results of the naive bayes classifier’s performance in
table 4.1. We can see that the performance of the Naive Bayes method varies a lot with
the feature set and the “Concatenative” and “Concatenative w/ Doc” feature sets perform
the best. Using backoff features seems to hurt the performance and the variance in the
values of AUPR and P@10 indicates that the method is very sensitive to the examples
that are chosen as inputs. This result is expected since the method only receives 10 data
points as input. However even with 10 data points the Naive Bayes method is able to

12

achieve 30% precision amongst its top 10 recommendations on average which indicates
that there are correlations between the values of different attributes that can be exploited
for performing recommendations.

Only Backoff Concatenative Concatenative w/ Doc Concatenative w/ Backoff Random
AUPR 8.8± 3.9 12.6± 5.9 12.5± 5.8 10.9± 5.0 0.9± 0.1
P@10 20.4± 13.0 29.6± 16.7 29.8± 18.1 25.3± 12.7 0.2± 0.5

Table 4.1: Performance(%) with NB with 90% confidence intervals.

Error Analysis We analyzed the coefficients of the trained Naive Bayes models and
the predictions made by the system, specifically we tried to understand why the Naive
Bayes model sometimes gave a very low rank to relevant entities. For the first part of the
analysis we checked the most important features selected by the method for a few trials of
the algorithm for the predicate “EmploymentMembership=Army”. We found that the NB
model gave a high score to intuitive feature values that correlated with the true predicate,
for example it gave high weight to the “EmploymentMembership=Pentagon” feature when
trained to recommend entities that satisfied “EmploymentMembership=Army”. Such an
assignment of high scores to related entities is an example of the kind of rules that we
wish to learn.3

Useful features for recommending entities are tabulated in table 4.1.

Relation Value Features
Role author Role=Director Role=Executive
Role director EmploymentMembership=U.S. StudentAlum-HQ=U.S.
EmploymentMembership Army EmploymentMembership=Pentagon Role=spokesman
EmploymentMembership White House EmploymentMembership=United States Role=representative
Resident Chinese Leadership-HQ=Chinese Leadership=Communist Party
Resident Texas EmploymentMembership=Texas Origin=American
Leadership Democratic EmploymentMembership=Democratic Leadership=Democrats
Leadership Parliament Role=representative Role=president
Origin American Resident=American Role=president
Origin Russia Resident=Russian EmploymentMembership=Russian
StudentAlum Harvard StudentAlum=Harvard Law School EmploymentMembership=Harvard
StudentAlum Stanford Resident=California Origin=American

Table 4.2: Highly weighted features for recommending PER entities according to relation-
ship criterion. For example, we found that if the graph claimed that someone
was a resident of “Russian” or employed by “Russian”, then their origin might
likely be “Russia”.

One reason for measured “error” is that in some cases the NB algorithm made correct
recommendations in the top 10, but were counted as incorrect since they were not part of

3Keeping in mind that such rules can only be applied to those PER vertices that have features under
the graph, and that most do not.

13

the Adept KB. This highlights a known challenge associated with evaluating any such
recommendation task (where the entire truth set is not known even at test time).
For the second part of the analysis we checked why the Naive Bayes model did not

assign a high rank to the true answers: for half of the cases we found that the PER
entities that were misclassified did not have any feature that occurred in O+. This further
evidence of data sparsity in the graph: even for vertices sub-selected from the graph for
purposes of these synthetic experiments, chosen in order that they had non-zero features,
it was still often the case that there was no feature overlap between the test vertex and
the training data (except for the single “feature” that represented the predicate we were
directly trying to predict). We also observed on manual inspection a fair amount of lexical
diversity in feature values: while we do not expect an order of magnitude impact, it did
appear that further improvements to canonicalization of values in the KB might offer
some limited improvement (e.g., a hypothetical example would be the difference between
“Russia” and “Russian” as values in the graph, for the same relation argument across two
examples).

4.2 Entity Recommendation Through Modified Adsorption

The MAD algorithm was introduced by (Talukdar and Crammer, 2009) as an algorithm
for graph-based semi-supervised learning. The MAD algorithm receives a graph along
with a labeled set O of entities in the graph and binary labels indicating their relevance
or irrelevance to the predicate as input. As output, the MAD algorithm produces a soft
assignment from the unlabeled nodes to the binary label set.4

The MAD algorithm produces a soft assignment by solving an unconstrained optimiza-
tion problem over the space of all labelings where the objective is defined such that the
labeling it produces are “smooth”, i.e., the labels of nodes that share an edge tend to be
similar, and it tends to agree with the input partial labeling and that it should labeling
should be close to an eigenvector of the graph laplacian of the input graph. Ideally,
the soft assignment that MAD produces should match the true unknown labels of the
unlabeled vertices.
In order to apply MAD which is only defined for graphs with untyped edges to the

Adept KB where the edges have types we use the following trick: for each edge of the
form v© r−→ q© where v is a PER entity, we change the edge from its original form to
v©−→ rq©. I.e., for each edge incident on a PER entity we fuse the edge type with the
neighboring vertex and leave the PER entity as is. This creates many new neighboring
vertices and removes typing information from the edges. As explained in section 4.1 there
are two variants of the Adept KB that we consider, the first variant does not contain
document co-occurrence information but the second variant contains it. In order to add
document co-occurrence information to the Adept KB graph we create “document” nodes
and add edges between PER entities and the documents that they occurred in. For both

4The MAD algorithm can be stated in more general terms but the above treatment suffices for our
purposes. We refer the reader to (Talukdar and Crammer, 2009) for details of the MAD algorithm
and its analysis.

14

of the variants we created untyped versions of the original graph. We present the results
of applying the MAD algorithm to the Adept KB in table 4.3.

Results The results indicate that adding the document co-occurrence information
hurts the performance of the MAD algorithm although the decrease is not statistically
significant for either of the metrics. The overall performance of the MAD algorithms is
much worse than the performance of the NB model especially on the P@10 metric.

Concatenative Concatenative w/ doc
AUPR 7.0± 2.8 5.4± 1.8
P@10 9.8± 11.2 9.6± 7.5

Table 4.3: Performance(%) with MAD with 90% confidence intervals.

4.3 Entity Recommendation with Unweighted Random Walks

The Unweighted Random Walk method uses statistics about the commute time of
unweighted random walks to perform vertex nomination as follows: Given O+, for each
v ∈ O+ we perform w random walks of some fixed length l that start from v. w and l are
hyper-parameters which we set to 10 and 3 after some initial tuning. During each random
walk we keep track of the vertices visited by that random walk and we aggregate the
counts of all the vertices visited by a random walk, over all the random walks performed,
for the set O+ corresponding to a given predicate and trial. This vector of counts is used
to arrange the unlabeled vertices by assigning a high ranking to those vertices that were
visited more often. We use this method on the two variants of graphs, “Concatenative”
and “Concatenative w/ Doc” which have the same meaning as before.

Results We present the results in table 4.4. The results indicate that unweighted
random walks perform worse than the MAD algorithm on the AUPR metric, but they
outperform MAD in terms of precision. The performance of Unweighted Random Walks
is worse than the Naive Bayes models.

Concatenative Concatenative w/ Doc
AUPR 2.6± 1.8 1.6± 0.7
P@10 12.0± 9.0 7.6± 7.3

Table 4.4: Performance(%) with Random Walks with 90% confidence intervals.

5 Conclusions

Our experiments with vertex nomination on the Adept KB indicate that the the closed
ontology under which the KB was generated was too restrictive. Because of the small

15

number of relations in the ontology, a large number of named entities that were extracted
from the text corpus remained disconnected from other entities, and clearly it is impossible
to use such disconnected entities in a vertex nomination algorithm.
Amongst the small subset of the graph that was not disconnected, it is possible to

perform vertex nomination using the Naive Bayes model however the performance was low.
It is important to note that the Adept “Knowledge Graph” behaved more like a labeled
set of features, or a bipartite graph, instead of a communication graph which the original
vertex nomination methods were designed for and applied to. The original thought behind
applying Vertex Nomination methods to Knowledge Graphs was the assumption that
the Knowledge Graph is rich in entity to entity relations, much like in a social network.
What we observe is that the KG is not rich in Entity to Entity relationships, e.g., out of
a total of 134, 581 relations only 3, 508 relations connect one person entity to another.

Proposed Next Steps The results indicated that the current Adept KB does not
support methods for vertex nomination since a majority of the entities in the KB are
disconnected, therefore, we propose to investigate methods to “expand” the ontology and
introduce more relations in the ontology.

References

Marjorie Freedman Bonan Min, Constantine Lignos. Bbn’s 2015 system for cold start
knowledge base population. 2015.

TAC-KBP@NIST. Cold Start Knowledge Base Population at TAC 2015 Task Description.
NIST, 1.1 edition, July 2015.

Partha Pratim Talukdar and Koby Crammer. New regularized algorithms for transductive
learning. In Machine Learning and Knowledge Discovery in Databases, pages 442–457.
Springer, 2009.

16

