
Variance Reduction for AB testing Two Policies

Pushpendre Rastogi

September 27, 2020

AB testing is an economically important estimation problem.1 One application of AB testing
is to test the improvement in the new version of a classifier in comparison to the old version.
Another application is to test versions of contextual bandits that decide amongst two pieces
of content to show to a customer. In both situations we are comparing two policies which can
take 1 out of K actions given an input. A common idea often proposed in such a situation
is to only use those inputs (a.k.a. samples) in the AB test for which the two policies take
different actions. In this note I quantify the benefit of this idea.

Why this problem is interesting? I think quantifying the benefit of this idea is inter-
esting because its not clear apriori that removing inputs where the two systems produce
the same output will actually improve efficiency. Consider a situation where two policies
A and B can chose between action 1 and 2. Let’s say that A and B are deterministic and
they agree in their recommendation on 50% of the population, and that the total traffic
is split 50/50 between the two policies. So out of 100 samples we’ll end up throwing out
50 samples and we’ll have 25 samples where policy A prescribed the action to take and 25
samples where policiy B prescribed the action. So whatever benefit we get from using only

1Data Science can be divided into four areas. Estimation, Inference, Prediction and Control.
Estimation measures a “population level” quantity from samples. E.g. the problem of AB testing is an

“estimation” problem. Research in estimation comes up with frameworks for measuring how well an estimator
can perform and applied research comes up with procedures for more efficient estimation. For example the
statistical concept of the variance of an estimator measures the quality of an estimator and techniques such as
control variates, conditioning, importance sampling, and antithetic variables make an estimator more efficient
by reducing its variance.

Inference is the problem of finding out the true parameters underlying a data generating process where the
data may either be passively observed, or we may need to design an apparatus for collecting observations that
is efficient and inexpensive. Techniques such as Maximum likelihood estimation, Pseudo-likelihood, Bayesian
Inference (deterministic or sampling based), and the method of moments are a few statistical inference
methods.

Prediction is the problem that is directly studied under supervised learning and weakly-supervised learning.
Methods such as Deep learning, Kernel methods, and linear classifiers are used in this area.

And, finally, the problem of control is to design policies for taking actions. Techniques in reinforcement-
learning are largely focused on learning policies that work well inside MDPs. Some of the most famous
policies in game-theory arise from the study of Nash-equilibrium in zero-sum games. The classical control
theory uses laplace transforms to study the control problem arising in electro-mechanical systems governed
by low-order differential equations.

1

“clean” samples in our AB test must be greater than the loss we suffered from throwing out
the 50 samples where the two policies prescribed the same action. Its this tension between
having less samples but which are “cleaner” which makes this problem interesting.

1 The solution

Formal Statement: Let the input X be sampled from some distribution over the input
space X . Let YA and YB, both in the action space A, be the actual actions taken by the
policies, and let M = I{YA = YB} be the random variable that denotes whether the two
policies took the same action or not. Let RA, RB be two random variables taking values in
{0, 1}. They denote the reward received by policy A,B respectively for input X. Let D
be the random variable which measures the difference between reward received by the two
policies, i.e. D = RA − RB;D ∈ {−1, 0, 1}. Let N be the total number of samples. Let di
denote the value of D for the i-th sample and mi be the value that Mi takes. We dont observe
di in practice, only either ra or rb but we can observe mi. For convenience let qi = 1−mi

and Q =
∑N

i=0 qi so Q denotes the total times that the the two policies did not match. Note
that Q itself is a random variable.

Note that E[D|M = 1] = 0 because given that the two policies being considered took the
same action they should receive the same reward. Therefore,

E[D] = E[E[D|M]] = P (M = 0)E[D|M = 0] + P (M = 1)E[D|M = 1] (1)

= P (M = 0)E[D|M = 0] (2)

= E[I{M = 0}]E[D|M = 0] (3)

1.1 First Attempt

If we could observe di then we could estimate E[D] via three estimators.

E1)
1

N

n∑
i=1

di E2)
P (M = 0)

Q/N

1

N

n∑
i=1

diqi E3)
Q

N

1

Q

n∑
i=1

diqi =
1

N

n∑
i=1

diqi

E1 has variance Var(D)/N . E3 has variance Var(DQ)/N .

Var(D) = E[Var(D|Q)] + Var[E(D|Q)] (4)

= Var(D|Q = 1)P (Q = 1) + Var(D|Q = 0)P (Q = 0)

+
(
E(D|Q = 1)− E(D|Q = 0)

)2
P (Q = 0)P (Q = 1) (5)

= Var(D|Q = 1)P (Q = 1) + Var(D|Q = 0)P (Q = 0)

+
(
E(D|Q = 1)

)2
P (Q = 0)P (Q = 1) (6)

Var(DQ) = E[Var(DQ|Q)] + Var[E(DQ|Q)] (7)

= Var(D|Q = 1)P (Q = 1) +
(
E(D|Q = 1)

)2
P (Q = 0)P (Q = 1) (8)

= Var(D|Q = 1)P (Q = 1) (9)

2

This shows that Var(E1) is strictly greater than Var(E3). E2 has an additional factor which
acts like a multiplicative control-variate so its variance will be even lower than E3. Alas, we
can not actually implement these estimators because di is never observed.

1.2 The Solution

Since we can only observe either yai or ybi but not di therefore we can only compute:

1

NA

NA∑
i=1

yai −
1

NB

NB∑
i=1

ybi (10)

But this just means that the variance will be double the population variance for the true
bernoulli rewards.

1.3 Simulation

Consider the following code where I simulate two policies that pick actions 0 with probabilities
0.6, 0.55 respectively. The reward prob of action 0 is 0.6 and for action 1 reward probability
is 0.55. Obviously policy A - policy B = 0.52− 0.51 = 0.01.

1 import numpy as np

2 prA0 = 0.6

3 prA1 = 0.4

4 piA = 0.6

5 piB = 0.55

6 erA = prA0 * piA + prA1 * (1-piA)

7 vrA = erA * (1 - erA)

8 erB = prA0 * piB + prA1 * (1-piB)

9 vrB = erB * (1 - erB)

10 M = int(1e5)

11 for N in [int(1e2), int(1e3)]:

12 def bern(p):

13 return np.random.rand(M, N) < p

14 print(’N’, N)

15 aA = bern(piA)

16 aB = bern(piB)

17 rA = bern(prA0) * aA + bern(prA1) * (1-aA)

18 rB = bern(prA0) * aB + bern(prA1) * (1-aB)

19 print(f’{rA.mean():.4f}, {erA:.4f}, {np.var(rA):.4f}, {vrA:.4f}’)

20 print(f’{rB.mean():.4f}, {erB:.4f}, {np.var(rB):.4f}, {vrB:.4f}’)

21 tmp = rA[:, :N//2]. mean (1) - rB[:, N//2:]. mean (1)

22 var1 = np.var(tmp)

23 print(’Var E1’, np.abs (0.01 - np.mean(tmp)), var1)

24 q = (aA != aB)

25 tmp = (rA * q)[:, :N//2]. mean (1) - (rB * q)[:, N//2:]. mean (1)

26 var2 = np.var(tmp)

27 print(’Var E3’, np.abs (0.01 - np.mean(tmp)), var2)

28 print(f’relative savings in samples {100*(1 - var2 / var1):.2f}%’)

29 print()

3

Results

1 N 100

2 0.5200 , 0.5200 , 0.2496 , 0.2496

3 0.5099 , 0.5100 , 0.2499 , 0.2499

4 Var E1 0.00040560000000000075 0.009962259488640001

5 Var E3 0.0004542000000000001 0.007365961702359999

6 relative savings in samples 26.06%

7

8 N 1000

9 0.5200 , 0.5200 , 0.2496 , 0.2496

10 0.5099 , 0.5100 , 0.2499 , 0.2499

11 Var E1 0.00017972000000000474 0.001001855060721601

12 Var E3 0.00017492000000000028 0.0007403123629936004

13 relative savings in samples 26.11%

We can see that the Estimator 3 has 25% less variance than Estimator 1 because it conditions
on the decisions. Also note that the above estimators are realistic because they do not assume
access to D. Instead they assume that policy A and policy B is tried on distinct instances.

4

