
Efficient Implementation of Enhanced Adaptive
Simultaneous Perturbation Algorithm

Pushpendre Rastogi
Department of Computer Science

The Johns Hopkins University
Baltimore, MD 21218

Email: pushpendre@jhu.edu

Jingyi Zhu
Department of Applied Mathematics and Statistics

The Johns Hopkins University
Baltimore, MD 21218

Email: jingyi.zhu@jhu.edu

James C. Spall
The Johns Hopkins University
Applied Physics Laboratory

Laurel, MD 20723
Email: james.spall@jhuapl.edu

Abstract—Stochastic approximation (SA) applies in
both the gradient-free optimization (Kiefer-Wolfowitz)
and the gradient-based setting (Robbins-Monro). The
idea of simultaneous perturbation (SP) has been well
established. This paper discusses an efficient way of
implementing both the adaptive Newton-like SP al-
gorithms and their enhancements (feedback and op-
timal weighting incorporated), using the Woodbury
matrix identity, a.k.a. matrix inversion lemma. Basi-
cally, instead of estimating the Hessian matrix directly,
this paper deals with the estimation of the inverse of
the Hessian matrix. Furthermore, the precondition-
ing steps, which are required in early iterations to
maintain positive-definiteness of the Hessian estimates,
are imposed on the Hessian inverse rather than the
Hessian itself. Numerical results also demonstrate the
superiority of this efficient implementation on Newton-
like SP algorithms.

Keywords—Adaptive Estimation; Simultaneous Per-
turbation Stochastic Approximation (SPSA); Woodbury
Matrix Identity

I. Introduction

Stochastic approximation (SA) has been widely applied
in minimization and/or root-finding problems in noisy
environment. The Kiefer-Wolfowitz algorithm in [1] can
be viewed as a stochastic analogue of steepest descent
method, where the stochastic gradient is approximated
by a finite difference. The stochastic analogue of Newton-
Raphson algorithm is known to provide a nearly-optimal
SA algorithms with almost quadratic convergence rate.
However in practice, the exact/noisy Hessian information
is mostly unavailable. Many algorithms have been pro-
posed to achieve more accurate Hessian approximations.
Fabian [2] provides estimates for both the gradient and
Hessian information based on finite-difference approxima-
tion using noisy function information. Ruppert [3] also
presents a finite-difference Hessian approximation scheme
using noisy gradient information. Such finite-difference
formulations can be notoriously costly in dealing with
high-dimensional problems.

To overcome the curse of dimensionality, Spall [4] first
introduces the idea of simultaneous perturbation (SP),
which can be applied in both the gradient-free optimiza-
tion (Kiefer-Wolfowitz) and the gradient-based setting

(Robbins-Monro). Wang and Spall [6] creatively extends
SP idea to discrete optimization setting. Later Spall [5]
generalizes the SP idea to adaptive simultaneous pertur-
bation (ASP) and demonstrated a stochastic analogue of
Newton-Raphson algorithm. Spall [7] and [8] incorporate a
feedback process and an optimal weighting mechanism into
the method in Spall [5], providing an enhanced second-
order algorithm with more accurate Hessian matrix ap-
proximations. Chapter 7 of Bhatnagar et al. [11] exten-
sively explains the framework and convergence analysis for
some variants of Newton-type ASP algorithms.

The essence of second-order ASP algorithm, under the
minimization setting, is to approximately and efficiently
obtain an estimate of the Hessian matrix of the loss
function at each iteration using perturbation sequences
satisfying certain regularity conditions. The estimate of
the Hessian can be obtained solely from noisy loss function
evaluations or from noisy gradient evaluations.

Consider the problem of minimizing a differentiable
loss function L(θ) where θ ∈ Rp with p ≥ 1. Denote
g(θ) = ∂L/∂θ. The minimization problem minθL(θ)
is equivalent to the root finding problem g(θ) = 0.
Consider the typical case where one only have access to
noisy measurements of the function L(θ), say y(θ) =
L(θ) + ε(θ), or noisy measurements of the gradient g(θ),
say Y (θ) = g(θ) + e(θ). Throughout this paper, we
assume that only noisy function evaluations are available
to 2SPSA algorithms, and that 2SG algorithms use both
noisy function and gradient evaluations.

This paper presents an efficient way to obtain an accu-
rate inverse of estimate of the Hessian matrix H

−1
k , by

eliminating the necessity to solve a linear system of equa-
tions in the original algorithms (3) and (8). The basic idea
is to maintain and update the value of H

−1
k by applying

the Matrix Inversion Lemma (MIL) in Woodbury [9]:

(A+UCV)−1 = A−1−A−1U(C−1 +V A−1U)−1V A−1,
(1)

where A, U , C and V are of the correct (conformable)
sizes and the denoted matrix inverses exist.

Using MIL, we recursively update an estimate of the
Hessian inverse rather than the Hessian itself, and pre-

condition the inverse of the Hessian estimate directly.
Essentially, first update H

−1
k , and then perform the pre-

conditioning on H
−1
k to obtain H

−1
k .

In general, the perturbation sequences ∆k and ∆̃k in
Section II to IV can be any sequences satisfying the regu-
larity condition C.9 in Spall [8]. A special case of interest
as discussed in Section V, is when all components in the
perturbation sequences (both ∆k and ∆̃k) are symmetric
Bernoulli distributed, a.k.a. Rademacher distributed. Such
a perturbation sequence is valid and efficient as shown in
Sadegh and Spall [10]. Every component in the symmetric
Bernoulli sequence has a 50% chance of being either +1
or –1, such that:

∆k = ∆−1
k , ∆̃k = ∆̃−1

k . (2)

where for any vector x ∈ R
p \ {0}, x−1 denotes

[1/x1, . . . , 1/xp]T for the ease of following discussion. Ad-
ditionally, x−T denotes [1/x1, . . . , 1/xp].

Chapter 5 of a recent textbook Bhatnagar et al. [11]
comprehensively covers a deterministic perturbation con-
struction based on the particular structure of Hadamard
matrix in Sylvester [12]. Bhatnagar et al. [13] provides
some empirical evidences that such a deterministic con-
struction of the perturbation sequence results in better
approximation accuracy and speed of convergence than
the optimal stochastic generation described in Sadegh and
Spall [10]; though the superiority of this deterministic
formulation has not been proven theoretically yet. How-
ever, all the components of such deterministic Hadamard-
matrix-based perturbation are still either +1 or –1, so
(2) still holds. In Section V, we shall see the usage of
relationship (2).

The efficient implementations of ASP algorithms in this
paper aims to reduce the number of computation required
in the Hessian inverse. The derivations in Section II to IV
are for the coherent rank-two representation of the Hessian
update in Section VI. The key of reducing the FLOPs is
presented in Section VI: the decomposition of the rank-two
update of the Hessian update into a sequential rank-one
update of the Hessian inverse. Broadly, the perturbation
sequences ∆k and ∆̃k in Section II to IV can be any
sequences satisfying the regularity condition C.9 in Spall
[8], except that the perturbation sequence in the enhanced
2SG case in Section V has to satisfy (2). Section VII fur-
ther backs up the computational advantage of performing
the efficient implementation.

II. Adaptive 2SPSA Algorithm

The adaptive 2SPSA algorithm introduced in Spall [5]
employs the following two recursions:{

θ̂k+1 = θ̂k − akH
−1
k Gk(θ̂k), Hk = fk(Hk),

Hk = (1− wk)Hk−1 + wkĤk, k = 0, 1, . . .
(3)

where

wk = 1
k+1 ,

Gk(θ̂k) = y(θ̂k+ck∆k)−y(θ̂k−ck∆k)
2ck

∆−1
k ,

Ĥk = 1
2

[
δGk

2ck
∆−T
k +

(
δGk

2ck
∆−T
k

)T]
,

δGk = G
(1)
k (θ̂k + ck∆k)−G

(1)
k (θ̂k − ck∆k),

G
(1)
k (θ̂k ± ck∆k) = y(θ̂k±ck∆k+c̃k∆̃k)−y(θ̂k±ck∆k)

c̃k
∆̃−1
k .
(4)

ak, ck and c̃k are all non-negative scalar gain coefficients,
∆k and ∆̃k are stochastic perturbation (vector) sequence,
and the pre-conditioning function fk projects an indefinite
matrix to some positive definite matrix and is used to
maintain the positive-definiteness of Hk.

As mentioned in Section I, we focus on converting the
second recursion in algorithm (3) into a recursion on H

−1
k ,

and directly pre-conditioning H
−1
k such that

H
−1
k = fk(H−1

k). (5)

A particular form of fk suggested in Spall [8] is
fk : Rp×p → Rp×p defined by fk(H) = (HTH +δkIp)1/2

where the square root is the (unique) positive definite
matrix square root and δk is a small positive number. The
preconditioning imposed on the Hessian inverse as in (5)
generally applies throughout Section II-V.

Denote
δyk = [y(θ̂k + ck∆k + c̃k∆̃k)− y(θ̂k + ck∆k)]

− [y(θ̂k − ck∆k + c̃k∆̃k)− y(θ̂k − ck∆k)],
(6)

Immediately,

Ĥk = 1
2
δyk

2ck c̃k
(
∆̃−1
k ∆−T

k + ∆−1
k ∆̃−T

k

)
. (7)

Now the updated Hessian can be readily seen as a rank-
two update with respect to the current Hessian estimate
Hk:

Hk = (1− wk)Hk−1 + wkδyk
4ck c̃k

(∆̃−1
k ∆−T

k + ∆−1
k ∆̃−T

k).

III. Enhancement for Adaptive 2SPSA
Algorithms

Spall [8] improved the adaptive 2SPSA algorithm from
Section II by incorporating feedback and optimal weight-
ing mechanisms. The enhanced method uses the following
two recursions:{

θ̂k+1 = θ̂k − akH
−1
k Gk(θ̂k), Hk = fk(Hk),

Hk = (1− wk)Hk−1 + wk(Ĥk − Ψ̂k), k = 0, 1, . . .
(8)

where Gk(θ̂k), Ĥk, δGk, and G
(1)
k (θ̂k±ck∆k) are defined

in (4), and notation in (6) and (7) in Section II apply.
The optimal weighting parameter, which minimizes the
asymptotic variances of the elements in Ĥk, is proven to
be:

wk = c̃2
kc

2
k∑k

i=0 c̃
2
i c

2
i

. (9)

Eq. (3.8) in Spall [8] provides a symmetrized feedback
term Ψ̂k:

Ψ̂k = (Φ̂k + Φ̂T
k)/2, (10)

where the pre-symmetrized form of Ψ̂k:

Φ̂k = D̃T
k Hk−1Dk + D̃T

k Hk−1 + Hk−1Dk. (11)

with Dk = ∆k∆−T
k − Ip, D̃k = ∆̃k∆̃−T

k − Ip.
Collecting terms in Φ̂k gives:

D̃T
k Hk−1Dk + D̃T

k Hk−1 + Hk−1Dk

= ∆̃−1
k ∆̃T

k Hk−1∆k∆−T
k −Hk−1.

Now we note that the symmetry of previous update
Hk−1 guarantees that ∆T

k Hk−1∆̃k = ∆̃T
k Hk−1∆k. De-

note
bk = wk

2 (δyk
2ck c̃k

−∆T
k Hk−1∆̃k). (12)

Now we can obtain Hk as a rank-two update of Hk−1:

Hk = (1− wk)Hk−1 + wk(Ĥk − Ψ̂k)

= Hk−1 + wk
2 (δyk

2ck c̃k
∆̃−1
k ∆−T

k − ∆̃−1
k ∆̃T

k Hk−1∆k∆−T
k)

+ wk
2 (δyk

2ck c̃k
∆−1
k ∆̃−T

k −∆−1
k ∆T

k Hk−1∆̃k∆̃−T
k)

= Hk−1 + bk(∆̃−1
k ∆−T

k + ∆−1
k ∆̃−T

k).

IV. Adaptive 2SG Algorithm
Now we have access to the noisy measurement of

the gradient information, Gk(θ̂k), G
(1)
k (θ̂k + ck∆k) and

G
(1)
k (θ̂k − ck∆k) at each iteration k. An adaptive 2SG

algorithm introduced in Spall [5] has the recursion as
algorithm (3) with

wk = 1

k + 1 ,

δGk = G
(1)
k (θ̂k + ck∆k)−G

(1)
k (θ̂k − ck∆k),

Ĥk = 1
2

[
δGk

2ck
∆−T
k +

(
δGk

2ck
∆−T
k

)T]
.

(13)

This leads to the following rank two update with respect
to the current Hessian estimate Hk:

Hk = (1− wk)Hk−1 + wk
4ck

((δGk)∆−T
k + ∆−1

k (δGk)T).

V. Enhancement for Adaptive 2SG Algorithms
The enhancement on adaptive 2SG algorithm can be

achieved analogously to that on adaptive 2SPSA algo-
rithm, by incorporating a feedback mechanism and op-
timal weighting in (9). Same as Section IV, enhanced
2SG algorithms have access to the noisy measurement of
the gradient information, Gk(θ̂k), G

(1)
k (θ̂k + ck∆k) and

G
(1)
k (θ̂k − ck∆k) at each iteration k.
Eq. (3.12) in Spall [8] provides a symmetrized feedback

term Ψ̂k, which can be rewritten as the following using
relationship (2):

Ψ̂k = (Hk−1Dk + DkHk−1)/2, (14)

where Dk = ∆k∆−T
k − Ip.

If we only use the symmetric Bernoulli (Rademacher)
perturbation sequence as suggested in Sadegh and Spall
[10], then Dk is symmetric. Meanwhile, Ĥk and Ψ̂k can
simplified as following:

Ĥk = 1
2

1
2ck

(
(δGk)∆−T

k + ∆k(δGk)T
)
,

Ψ̂k = 1
2
(
Hk−1∆k∆−T

k + ∆k∆T
k Hk−1 − 2Hk−1

)
.

(15)
Denote

uk = 1
2ck

δGk −Hk−1∆k. (16)

Using the symmetry of update Hk−1, we obtain a rank-
two update with respect to the current Hessian estimate
Hk:

Hk = Hk−1 + wk
2 (uk∆−T

k + ∆−1
k uTk).

VI. Efficient Update for Hessian Inverse
As described in Section II–V, the Hessian updates in

efficient implementations can be described as rank-two up-
dates in all variants of adaptive simultaneous perturbation
algorithms. The Hessian update (either with or without
feedback term) can be generalized as:

Hk = dkHk−1 + bk(ukvTk + vkuTk). (17)

where the detailed expressions for scalar terms dk and
bk, and vectors uk and vk, are listed in Table I for all
four cases. Note that condition (2) is only required for the
enhanced 2SG case marked by *.

The procedure in eq. (17) requires at least 4p2 +p oper-
ations (scalar addition and multiplication). Recursion (17)
has to be updated in the original algorithms (3) and (8)
for all four cases. However, in the efficient implementation
setting, it needs to be updated only for enhanced 2SPSA in
Section III and enhanced 2SG in Section V, as evidenced
in Table I.

Recognizing the rank-two structure of the Hessian up-
dates in eq. (17) leads to an efficient update recursion
for the Hessian inverse by applying the MIL (1). First
compute

ũk =

√
|vk|

2|uk|
(uk + |uk|

|vk|
vk)

ṽk =

√
|vk|

2|uk|
(uk −

|uk|
|vk|

vk)

(18)

such that

ukvTk + vkuTk = ũkũTk − ṽkṽTk .

Although the computation of ũk, ṽk requires 6p opera-
tions (addition, multiplication and square root), it reduces
the number of required matrix vector multiplications from
4 down to 2, and it maintains symmetry of updates

Algorithms dk bk uk vk
Adaptive 2SPSA 1 − wk

wkδyk
4ck c̃k

∆̃−1
k

∆−1
k

Enhanced 2SPSA 1 wk
2 (δyk

2ck c̃k
− ∆T

k Hk−1∆̃k) ∆̃−1
k

Adaptive 2SG 1 − wk
wk
4ck

δGk

Enhanced 2SG * 1 wk
2

1
2ck

(δGk) − Hk−1∆k

TABLE I: Expressions for Terms in eq. (17).
In original algorithms (3) and (8), eq. (17) needs to be updated for all four algorithms.

In efficient implementation, eq. (17) needs to be updated only for Enhanced 2SPSA and 2SG *.
Enhanced 2SG * requires symmetric Bernoulli perturbation sequences.

even under numerical approximations. Here is the update
recursion of Hessian inverse H

−1
k :B−1

k = d−1
k H

−1
k−1 −

d−2
k

b−1
k

+ũT
k

H
−1
k−1ũk

H
−1
k−1ũkũTk H

−1
k−1,

H
−1
k = B−1

k + 1
b−1

k
−ṽT

k
B−1

k
ṽk

B−1
k ṽkṽTk B−1

k .

(19)
where Bk = dkHk−1 + bkũkũTk .

Algorithms FLOPS
Adaptive 2SPSA 9p2 + 10p
Enhanced 2SPSA 15p2 + 13p

Adaptive 2SG 9p2 + 10p
Enhanced 2SG* 15p2 + 13p

TABLE II: FLOPS required in eq. (18)–(19)
Enhanced 2SG* requires symmetric Bernoulli perturbation sequences.

The rank-two update (two sequential rank-1 updates)
in equation (19) requires 9p2 + 4p operations per itera-
tion. The total number of operations required to perform
all four efficient implementations from Section II to V
are listed in Table II. Now we can proceed to do the
FLOPs comparison between the efficient implementation
(18)–(19) to the Hessian (inverse) update (including com-
putation of H

−1
k Gk(θ̂k), excluding preconditioning step)

in original algorithms (3) and (8).
In algorithm (3) and (8), we need to compute

H
−1
k Gk(θ̂k), where Hk is expected to be symmetric

positive definite due to the symmetric update and the
preconditioning step fk. The fastest algorithm of handling
linear system Hkx = Gk(θ̂k) is Cholesky factorization.
In fact, when solving system Ax = b with the mldivide
function (equivalently linsolve), MATLAB will switch to
Cholesky solver when A is positive definite. This can be
evidenced by the command setup below that produces
information about choice of algorithm based on matrix
structure, and about storage allocation.

spparms('spumoni',1);

Page 63 in Hämmerlin and Hoffmann [14] provides the
complexity of Cholesky decomposition: (p3 + 3p2 − p)/3.
Page 602 in Datta [15] states that after the Cholesky

factorization (system Ax = b replaced by RTRx = b),
the mldivide (backslash operator) recognizes triangular
systems. So the converted system is then solved by back-
ward and forward substitution as x = R\(RT \b) with
2p2 FLOPs. So the total FLOPs for Hessian update as
shown in eq. (17) Hessian (inverse) update (including
computation of H

−1
k Gk(θ̂k), excluding preconditioning

step) in the original algorithms (3) and (8) is

4p2 + p+ 1
3(p3 + 3p2 − p) + 2p2 = 1

3p
3 + 7p2 + 2

3p (20)

When p > 9 in applying basic adaptive algorithms,
or when p > 25 in applying enhanced algorithms, the
corresponding number of operations is fewer than p3/3 +
7p2 + 2p/3 as required in original algorithms (3) and (8).

Assume that the time taken for every computation
(addition, multiplication, etc.) is the same. Then for the
adaptive 2SPSA and 2SG setting, the theoretical ratio of
time taken in the efficient implementation over the time
taken in Hessian (inverse) update (including computation
of H

−1
k Gk(θ̂k), excluding preconditioning step) in the

algorithms (3) and (8) is at least:

9p2 + 10p
p3/3 + 7p2 + 2p/3 = O

(
1
p

)
. (21)

Similarly, for the enhanced 2SPSA and 2SG setting, the
theoretical ratio is

15p2 + 13p
p3/3 + 7p2 + 2p/3 = O

(
1
p

)
. (22)

The efficient implementation on the Hessian inverse
update (18)–(19) is faster than the original setup, in the
sense that the FLOPs required in computing the Hessian
inverse is reduced from O(p3) to O(p2).

VII. Numerical Study
We now present an empirical study of the runtime per-

formance of the proposed updates for the case of adaptive
2SPSA in Section II and enhanced 2SPSA in Section III,
on the skewed-quartic function in Spall [8].

L(θ) = θTBTBθ + 0.1
p∑
i=1

(Bθ)3
i + 0.01

p∑
i=1

(Bθ)4
i .

where the dimensionality of the vectors p = 15 in this
numerical study. B is such that pB is an upper triangular
matrix of all 1’s. Easily we can derive

g(θ) = BT

(
2Bθ + 0.3

p∑
i=1

(Bθ)2
i + 0.04

p∑
i=1

(Bθ)3
i

)
,

H(θ) = BT

[
diag

(
2 + 0.6 ∗Bθ + 0.12

p∑
i=1

(Bθ)2
i

)]
B.

(23)
It can be shown that that L(θ) is a strictly convex func-

tion, and its minimizer is θ∗ = 0, which gives L(θ∗) = 0.
Both adaptive 2SPSA (A2SPSA) algorithm and its

enhancement (E2SPSA) require a choice of the gain se-
quence ak, the averaging sequence wk, the perturbation
size sequences ck, c̃k, the preconditioning sequence δk and
the number of iterations N . We set the budget to be
20, 000 noisy loss evaluations per iteration. Accordingly,
set n = 5000, ak = a/(A+ k + 1)α, wk = w/(k + 1)d,
ck = c̃k = c/(k + 1)γ and δk = 10−8e−k where the values
of a,A,w, d, α, γ are determined following the practical
guidelines in Spall [5] and/or via tuning process. Partic-
ularly, a = 1, w = 0.1, d = 0.501, α = 1, A = 50, γ =
1/6. Additionally, the heuristic of bounding (discribed in
Section II in [5]) is applied: the iterate at each step is
restricted within a ball (in Euclidean norm), centered at
the current estimate, with a radius set to be 10.

0 5 10 15 20 25 30 35 40 45 50
−6

−5

−4

−3

−2

−1

0

Iterations x 100

Lo
g

of
 N

or
m

al
iz

ed
 L

os
s

Adaptive2SPSA
FeedbackAdaptive2SPSA
EfficientAdaptive2SPSA
EfficientFeedbackAdaptive2SPSA

Fig. 1

To compare the original 2SPSA formulation, where
the computation of H

−1
k Gk(θ̂k), with its more efficient

implementation, we first plot the normalized loss [L(θ̂k)−
L(θ∗)]/[L(θ̂0)−L(θ∗)] against iteration k averaging over

0 5 10 15 20 25 30 35 40 45 50
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Iterations x 100

N
or

m
al

iz
ed

 S
qu

ar
ed

 D
is

ta
nc

e

Adaptive2SPSA
FeedbackAdaptive2SPSA
EfficientAdaptive2SPSA
EfficientFeedbackAdaptive2SPSA

Fig. 2

20 simulation runs. Note that both versions of the al-
gorithms use the same random seed and are essentially
performing the same iterations. Therefore we would expect
that the normalized loss sequences should be close to
identical. This is evidenced by Figure 1.

Figure 2 plots the Euclidean distance between θ̂k and
θ∗ against iteration k averaging over 20 simulation runs.

Below is the table showing the time consumed in
each step for p = 15 case: Hessian (inverse) update,
pre-conditioning on Hessian (inverse), blocking step, and
loss function evaluation, for A2SPSA and E2SPSA and
their efficient implementations, efficient adaptive 2SPSA
(EA2SPSA) and efficient enhanced 2SPSA (EE2SPSA).

Algorithm Hessian Update Pre-Conditioning Blocking Evaluation Total
A2SPSA 0.363 1.836 0.431 0.699 3.330
EA2SPSA 0.297 1.702 0.426 0.698 3.123
E2SPSA 0.432 3.079 0.432 0.700 4.642
EEA2SPSA 0.334 1.738 0.435 0.712 3.220

TABLE III: Time Consumed in Each Procedure for p = 15
The unit of time is second.

Only consider the time consumed in the Hessian update
recursion at each iteration. The second column in Table III
shows that, the EA2SPSA only takes 81.82% of the time
taken in A2SPSA, and EE2SPSA only takes 77.31% of
that in E2SPSA.

The efficient implementation can save more time with
the original algorithms (3) and (8), as the dimension p goes
up. To validate the relationship (21)–(22), we run the al-
gorithms, using the same parameters tuned for dimension
p = 15, on different dimension p = 15, 30, 45, 60, 120 and
240.

Dimension A2SPSA EA2SPA Ratio
15 0.363 0.297 0.8182
30 0.525 0.369 0.7029
45 0.790 0.487 0.6165
60 1.094 0.654 0.5978
120 3.575 1.844 0.5158
240 1.881 0.942 0.5008

TABLE IV: Time Consumed in Hessian Update Procedure
for Different Dimension p
Ratio is time taken in EA2SPSA over time taken in A2SPSA.

Dimension E2SPSA EE2SPA Ratio
15 0.432 0.334 0.7731
30 0.565 0.398 0.7044
45 0.844 0.519 0.6149
60 1.138 0.709 0.6230
120 3.517 1.899 0.5399
240 1.984 0.935 0.4713

TABLE V: Time Consumed in Hessian Update Procedure
for Different Dimension p
Ratio is time taken in EE2SPSA over time taken in E2SPSA.

From tables IV–V, we can envision the trend that the
time consumed in the Hessian update procedure, where
the sequential rank-one update (19) makes a difference, is
lesser in the efficient implementations than in the original
algorithms (3) and (8). Though the ratio of time taken
in efficient implementation over that in original setup is
indeed decreasing as the dimension goes up, the ratio is
not decreasing as fast as (21)–(22) predict. The slower rate
results from the efficiency of mldivide function (equiva-
lently linsolve). The dimensions of our test matrices are far
too small to manifest the asymptotic p3/3 running time.
Furthermore, MATLAB will typically be making use of
parallel routines for computing the Cholesky factorization,
which saves more time in computation.

In short, this numerical example does show the superi-
ority of the efficient implementation of (18)–(19), in terms
of the running time and accuracy (though small as shown
in Fig 2). The asymptotic ratio (21)–(22) has not been
fully exploited in this small-dimensional example, though
it is theoretically valid.

VIII. Conclusion and Future Work
In this paper, we discuss an efficient implementation

of four Newton-like SP algorithms: adaptive 2SPSA, en-
hanced 2SPSA, adaptive 2SG, and enhanced 2SG. The ef-
ficiency, in terms of both time taken and the steps required
to achieved a certain numerical accuracy, is attained by a
unified sequential (rank-two) update using Woodbury ma-
trix identity. Particularly for the case of enhanced 2SG*,
the usage of symmetric Bernoulli perturbation sequence is
required.

As discovered from practical experience, the time taken
in the stochastic optimization (minimization) problem is

dominated by the noisy function/gradient evaluation and
the preconditioning part. We are gathering ideas in speed-
ing up the preconditioning step in the algorithm, so as to
magnify the contribution of this paper in streamlining the
Hessian inverse update.

Acknowledgment
The first author is sponsored by the Defense Advanced

Research Projects Agency (DARPA) under the Deep Ex-
ploration and Filtering of Text (DEFT) Program (Agree-
ment Number: FA8750-13-2-001). Both the second and
the third author receive support from the Office of Naval
Research (via Navy contract N00024-13-D6400).

References
[1] Kiefer, J., and Wolfowitz, J. (1952). Stochastic estimation of the

maximum of a regression function.The Annals of Mathematical
Statistics, 23(3), 462-466.

[2] Fabian, V. (1971). Stochastic approximation, Optimizing Meth-
ods in Statistics, J.S. Rustigi, Ed. New York: Academic Press,
pp. 439-470.

[3] Ruppert, D. (1985). A Newton-Raphson version of the multivari-
ate Robbins-Monro procedure. The Annals of Statistics, 236-245.

[4] Spall, J. C. (1992). Multivariate stochastic approximation using a
simultaneous perturbation gradient approximation. IEEE Trans-
actions on Automatic Control, 37(3), 332-341.

[5] Spall, J. C. (2000). Adaptive stochastic approximation by the
simultaneous perturbation method. IEEE Transactions on Au-
tomatic Control, 45(10), 1839-1853.

[6] Wang, Q., and Spall, J. C. (2011). Discrete simultaneous per-
turbation stochastic approximation on loss function with noisy
measurements. In Proceedings of the American Control Confer-
ence, San Francisco, Vol. 29, pp. 4520-4525.

[7] Spall, J. C. (2007). Feedback and Weighting Mechanisms for
Improving Jacobian Estimates in the Adaptive Simultaneous Per-
turbation Algorithm. In 41st Annual Conference on Information
Sciences and Systems (pp. 35-40). IEEE.

[8] Spall, J. C. (2009). Feedback and weighting mechanisms for
improving Jacobian estimates in the adaptive simultaneous per-
turbation algorithm. IEEE Transactions on Automatic Control,
54(6), 1216-1229.

[9] Woodbury, M. A. (1950). Inverting Modified Matrices, Memoran-
dum Rept. 42. Statistical Research Group, Princeton University,
Princeton, NJ, 316.

[10] Sadegh, P. and Spall, J. C. (1998). Optimal random perturba-
tions for stochastic approximation using a simultaneous pertur-
bation gradient approximation. IEEE Transactions on Automatic
Control, vol. 43, pp. 1480-1484 (correction to references: vol. 44,
pp. 231-232).

[11] Bhatnagar, S., Prasad, H. L. and Prashanth, L. A. (2013).
Stochastic recursive algorithms for optimization: simultaneous
perturbation methods, Springer.

[12] Sylvester, J. J. (1867). LX. Thoughts on inverse orthogonal ma-
trices, simultaneous signsuccessions, and tessellated pavements
in two or more colours, with applications to Newton’s rule,
ornamental tile-work, and the theory of numbers. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 34(232), pp. 461-475.

[13] Bhatnagar, S., Fu, M.C., Marcus, S.I. and Wang, I., 2003.
Two-timescale simultaneous perturbation stochastic approxima-
tion using deterministic perturbation sequences. ACM Transac-
tions on Modeling and Computer Simulation (TOMACS), 13(2),
pp.180-209.

[14] Hämmerlin, G., and Hoffmann, K. H. (2012). Numerical math-
ematics. Springer Science & Business Media.

[15] Datta, K. B. (2008). Matrix And Linear Algebra, Edition 2:
AIDED WITH MATLAB. PHI Learning Pvt. Ltd..

