Pushpendre Rastogi

3rd year CS Phd. Student pushpendre@jhu.edu

Johns Hopkins University

CLSP Student Seminar, Spring 2016

Outline

1 Introduction

Best of Both Worlds: Neural Encoding with Structured Decoding

Acknowledgements and References

Introduction: Two Themes

1 Improving Neural Network Architectures.

Outline

Introduction

2 Best of Both Worlds: Neural Encoding with Structured Decoding

Acknowledgements and References

Background: What is the task?

String transduction: Convert an input string to an output string.

Example

- Morphological Transduction:
 - Convert an imperative word in german to its past participle form. a b
 r e i b t → a b g e r i e b e n
- Lemmatization:
 - ullet Lemmatize a word in tagalog. b i n a w a l a n \mapsto b a w a l
- Annotate a string:
 - ullet Bob is a builder \mapsto Noun Verb Det Noun

What do we offer?

The Idea

Use a Neural Sequence Encoder to weight the arcs of a Weighted FST.

Weighted Finite State Transducers: Deterministic

Weighted Finite State Transducers: Deterministic

Weighted Finite State Transducers: Deterministic

Weighted Finite State Transducers: Deterministic

What is a State?

The States of an FST/WFST are its Memory.

Previous Work weights this transducer.

Weighted Finite State Transducers: Non-Deterministic

Weighted Finite State Transducers: Non-Deterministic

Weighted Finite State Transducers: Non-Deterministic

What's in a Path?

A Path is an alignment.

 $\begin{array}{ll} (\epsilon:s \ s:a \ a:s \ y:s) & \mapsto say:sass \\ \hline (\epsilon:s \ s:a \ a:\epsilon \ y:y) & \mapsto say:say \\ (\epsilon:\epsilon \ s:s \ a:a \ y:y) & \mapsto say:say \\ \hline (\epsilon:s \ s:a \ a:s \ y:y) & \mapsto say:sasy \\ \hline \end{array}$

Previous Work weights this transducer.

Weighted Finite State Transducers [Moh97, Eis02]

Pros

Cons

Neural Encoders and Decoders [SVL14]

Pros

Weighted Finite State Transducers [Moh97, Eis02]

Pros The states in an FST can be tailored for the task. Can compute the probability of a string.

Cons

Neural Encoders and Decoders [SVL14]

Pros

Weighted Finite State Transducers [Moh97, Eis02]

Pros The states in an FST can be tailored for the task.

Can compute the probability of a string.

Cons Traditionally arcs weights are linear functionals of arc features.

- ROI on feature engineering may be low.
- The model may become slow if there are too many features.
- The local features may not be expressive enough.

Neural Encoders and Decoders [SVL14]

Pros

Weighted Finite State Transducers [Moh97, Eis02]

Pros The states in an FST can be tailored for the task.

Can compute the probability of a string.

Cons Traditionally arcs weights are linear functionals of arc features.

- ROI on feature engineering may be low.
- The model may become slow if there are too many features.
- The local features may not be expressive enough.

Neural Encoders and Decoders [SVL14]

Pros Produce reasonable results with zero feature engineering.

Weighted Finite State Transducers [Moh97, Eis02]

Pros The states in an FST can be tailored for the task.

Can compute the probability of a string.

Cons Traditionally arcs weights are linear functionals of arc features.

- ROI on feature engineering may be low.
- The model may become slow if there are too many features.
- The local features may not be expressive enough.

Neural Encoders and Decoders [SVL14]

Pros Produce reasonable results with zero feature engineering.

Cons Require a lot of training data for performance.

Cannot return the probability of a string.

Figure: The automaton I encoding say.

Figure: Transducer F. Only a few of the possible states and edit arcs are shown. Previous Work weights these transducers

Figure: The automaton I encoding say.

Figure: Transducer *F*. Only a few of the possible states and edit arcs are shown. Previous Work weights these transducers

Figure: $G = I \circ F$. Only a few states, but all arcs between them are shown. Our Work weights this transducer.

Figure: The automaton I encoding say.

Figure: Transducer F. Only a few of the possible states and edit arcs are shown. Previous Work weights these transducers

Figure: $G = I \circ F$. Only a few states, but all arcs between them are shown. Our Work weights this transducer.

Why do we do this?

Weighting $F \equiv Weighting edits per type$.

Weighting $G \equiv Weighting edits per token.$

Neural features encode entire sentence.

We get a context dependent output side language model.

Figure: $G = I \circ F$. Only a few states, but all arcs between them are shown. Our Work weights this transducer.

Figure: $G = I \circ F$. Only a few states, but all arcs between them are shown. Our Work weights this transducer.

Idea: Use a BiLSTM to weight the arcs of G.

Figure: $G = I \circ F$. Only a few states, but all arcs between them are shown. Our Work weights this transducer.

Idea: Use a BiLSTM to weight the arcs of G.

or Relu. . . .

3:V

but all arcs between them are shown. Our Work weights this transducer.

Idea: Use a stack of BiLSTM to weight the arcs of G.

Idea: Use a stack of BiLSTM to weight the arcs of G.

or Relu. . . .

Training: SGD of the negative penalized conditional log-likelihood.

Experiments

We conducted experiments on two datasets:

- Morphological Reinflection of German Verbs.
- Lemmatization

Experiments

We conducted experiments on two datasets:

• Morphological Reinflection of German Verbs.

Task	Input	Output	Training Size	Dev Size	Test Size
$13\text{SIA} \mapsto 13\text{SKE}$	abrieb	abreibe	500	1000	1000
$2\mathrm{PIE}\mapsto13\mathrm{PKE}$	abreibt	abreiben	500	1000	1000
$2\text{PKE} \mapsto \mathbf{z}$	abreiben	abzurieben	500	1000	1000
$rP\mapsto pA$	abreibt	abgerieben	500	1000	1000

Lemmatization

Task	Input	Output	Training Size	Dev Size	Test Size
Basque	abestean	abestu	4674	584	584
English	activated	activate	3932	492	492
Irish	beathach	beathaigh	1101	138	138
Tagalog	binawalan	bawal	7636	954	954

Experiments

We conducted experiments on two datasets:

- Morphological Reinflection of German Verbs.
- Lemmatization

Model	13SIA	2PIE	2PKE	rP
Moses15	85.3	94.0	82.8	70.8
Dreyer (Backoff)	82.8	88.7	74.7	69.9
Dreyer (Lat-Class)	84.8	93.6	75.7	81.8
Dreyer (Lat-Region)	87.5	93.4	88.0	83.7
BiLSTM-WFST	85.1	94.4	85.5	83.0
Model Ensemble	85.8	94.6	86.0	83.8

Model	Basque	English	Irish	Tagalog
Base (W)	85.3	91.0	43.3	0.3
WFAffix (W)	80.1	93.1	70.8	81.7
ngrams (D)	91.0	92.4	96.8	80.5
ngrams + x (D)	91.1	93.4	97.0	83.0
$\frac{ngrams + x + I (D)}{ngrams}$	93.6	96.9	97.9	88.6
BiLSTM-WFST	91.5	94.5	97.9	97.4

Table: Exact match accuracy on Morphological Reinflection.

Table: Exact match accuracy on Lemmatization.

Experiments: The Learning Curve

Figure: Best match accuracy on test data Vs. Number of training samples.

Experiments: Comparison with Seq-to-Seq

Comparison between Sequence-to-sequence based models and the proposed model, on the validation set of morphological re-inflection tasks.

Experiments: Comparison with Seq-to-Seq

Comparison between Sequence-to-sequence based models and the proposed model, on the validation set of morphological re-inflection tasks.

Outline

Introduction

Best of Both Worlds: Neural Encoding with Structured Decoding

3 Acknowledgements and References

Acknowledgements

I collaborated with Ryan Cotterell and Jason Eisner for the work on neural-transducer hybrids. It is the culmination of a lot of earlier unpublished work done with Mo Yu, Dingquan Wang, Nanyun Peng and Elan Hourticolon-Retzler.

During this project I was sponsored by DARPA under the DEFT Program (Agreement FA8750-13-2-0017).

References

Jason Eisner.

 $\label{parameter} \mbox{Parameter estimation for probabilistic finite-state transducers}.$

In Proceedings of the ACL, pages 1–8, Philadelphia, July 2002.

Mehryar Mohri.

Finite-state transducers in language and speech processing. Computational linguistics, 23(2):269–311, 1997.

Ilya Sutskever, Oriol Vinyals, and Quoc Le.

Sequence to sequence learning with neural networks.

In Proceedings of NIPS, 2014.

Extra Slide

